數學系課程核心教材內容

課程名稱:(中文) 生物數學 (英文) Mathematical Biology				開課單位	碩士班
				課程代碼	2105735
學分數	3	必/選修	選	開課年級	ー、ニ

教學目標:

- (一) 主要目標: Mathematical biology aims at the mathematical treatment and modeling of biological processes, using a variety of applied mathematical techniques and tools. This course will show how mathematics can be applied to a variety of models to draw interesting conclusions for biology.
- (二) 次要目標: Emphasizing connections between diverse biological models and mathematical themes.

課程概述:(1) mathematical software;(2) population dynamics;(3) cellular biology;(4) pattern formation。

先修科目或先備能力:Advanced Calculus

建議參考書目

- 1. "Mathematical Biology: I. An Introduction (3rd edition)", by James D. Murray.
- 2. "Mathematical Biology: II (3rd edition)", by James D. Murray.
- 3. "Essential Mathematical Biology", by Nicholas F. Britton.
- 4. "Computational Cell Biology", by Christopher Fall, Eric Marland, John Wagner, and John Tyson.
- 5. "Mathematical Physiology (2nd edition)", by James Keener and James Sneyd.

課程大綱

單元主題	內容綱要	上課週數
Differential Equations	Some techniques for ordinary differential equations and partial differential equations	2-3
Mathematical Software	An short introduction to mathematical software(e.g., Mathematica, Maple, Matlab, XPP, and AUTO)	2-3
Biological Motion	Macroscopic theory for motion, Taxis*, Biological invasions, and wave propagation.	4-6
Cellular Biology	Biochemical kinetics, Metabolic pathways, and Neural modeling.	4-6
Pattern Formation	Turing instability, Turing bifurcations, Activator-inhibitor systems, and Tumour modeling*.	4-6

^{* :} Optional topics