數學系課程核心教材內容

課程名稱:(中文)數學模型導論(一)				開課單位	學士班
(英文) Introduction to Mathematical Modeling (I)			課程代碼	2104531	
學分數	3	必/選修	選修	開課年級	四年級

教學目標:在本課程中,我們將學習如何以徵分方程來建構數學模型,討論其解的性質,藉此 詮釋其解的意義,藉此來引導學生理解數學在跨領域應用之重要性。

課程概述:在數學的跨領域應用上,我們可以透過數學模型來詮釋自然科學領域中的某些現象。在本課程中,我們將介紹幾個以微分方程來建構的重要動力系統,例如彈簧系統、單擺系統、生物系統等。這些系统可以透過常微分方程式或偏微分方程式來描述,我們可藉由這些方程式某些解的存在性質、穩定性質,來詮釋這些解所代表的現象。

先修科目或先備能力:線性代數,微分方程

建議參考書目

- 1. Edward Beltrami, *Mathematics for Dynamic Modeling*, 2nd Edition, Academic Press, 1998.(教科書)
- 2. M. Hirsch and S, Smale, *Differential Equations, Dynamical Systems, and Linear Algebra*, Academic Press, 1974.

課程大綱

單元主題	內容綱要	上課週數
1. Simple Dynamic Models	Examples based on conservation of energy/mass; Background information on differential equations	1~2
2. Ordinary Differential Equations	Reviews of some methods of ordinary differential equations	1
3. Stability of Dynamic Models	Nullclines of the model; Linearization; Liapunov functions; Feedback control	3
4. Motions in Time and Space	Conservation of mass in time and space; Biological population growth; Wave propagation	4~5
5. Cycles and Bifurcation	Some application of Poincare-Bendixs on theorem: Self-sustained oscillations, Predator –prey systems, Competition of two species	4~6