數學系課程核心教材內容

課程名稱:(中	文)偏微分方程	開課單位	應數碩博班		
(英文) Partial Differential Equations (I)				課程代碼	2105203
學分數	3	必/選修	選	開課年級	1

教學目標:The basic knowledge of the differential equations and some properties of important types of PDE.

課程概述:We state some basic concepts. Then we study the first order, second order linear equations. At last, we learn the Cauchy problems.

先修科目或先備能力:Advanced Calculus

建議參考書目

Partial Differential Equations by Fritz John.

PDE by Lawrence C. Evans.

課程大綱

單元主題	內容綱要	上課週數
Introduction	Classification, Differential equations as mathematical models, Simple examples	1~2 weeks
First-order equations	Quasilinear equations, The method of characteristics, Examples, The Lagrange method, Conservation laws and shock waves, The eikonal equation, General nonlinear equations	6~7 weeks
Second-order linear equations ()	Classification, Canonical form of hyperpolic (and parabolic, elliptic) forms	2-3 weeks
The one-dimensional wave equation	Canonical form and general solution, The Cauchy problem and dAlembert's formula, Domain of dependence and region of influence, The Cauchy problem for the nonhomogeneous wave equation	3-4 weeks
Characteristic Manifolds and the Cauchy problem	Laurent Schwarz problems, The Cauchy problem, Real analytic and Cauchy-Kowalevski theorem, The uniqueness theorem of Holmgren problem	4-5 weeks

數學系課程核心教材內容

課程名稱:(中	文)偏微分方程	開課單位	應數碩博班		
(英文) Partial Differential Equations (II)				課程代碼	2105204
學分數	3	必/選修	選	開課年級	_

教學目標: We aim to present a reasonably large range of methods. We will study the basic ideas and concepts of pseudo-differential operators.

課程概述: We first introduce the distributions. Then we learn the symbols and the Sobolev space. At last, we study the regularity of elliptic PDE.

先修科目或先備能力:Advanced Calculus, Real Analysis

建議參考書目

- 1. Pseudo-differential Operators by Michael E. Taylor (Princeton University Press)
- 2. PDE by Fritz John.
- 3. PDE by Lawrence C. Evans.

課程大綱

單元主題	內容綱要	上課週數
Distributions	The convolution, The Fourier transform, The Planchel theorem, Tempered distributions	6-7 weeks
A partition of Unity and Taylor's formula	A partition of Unity, Taylor's formula	1-2 weeks
Symbols	Pseudodifferential operators, asymptotic expansions and its operations	5-6 weeks
The Sobolev space	The Sobolev space, Extensions, trace, Imbedding theorem	2-3 weeks
Regularity of elliptic Partial Differential Equations	Differentiability of weak solutions, Global regularity	1-2 weeks