數學系課程核心教材內容 | 課程名稱:(中 | 文)高等微積分 | 開課單位 | 學士班 | | | |----------------------------|---------|------|-----|------|---------| | (英文) Advanced Calculus (I) | | | | 課程代碼 | 2102001 | | 學分數 | 4 | 必/選修 | 必修 | 開課年級 | - | 教學目標:訓練學生之數學分析的能力 課程概述:討論函數的連續、可微及積分性質 先修科目或先備能力:微積分(一)(二) 建議參考書目 Wade, An Introduction to Analysis. Kosmala, A Friendly Introduction to Analysis. ## 課程大綱 | 單元主題 | 內容綱要 | 上課週數 | | | |-----------------------------------|---|------|--|--| | | (a) Completeness axiom. | | | | | | (b) Limits of sequences. | 3 | | | | Sequences in \mathbb{R} | (c) Limit theorems. | | | | | | (d) Bolzano-Weierstrass Theorem. | | | | | | (e) Cauchy sequences. | | | | | | (a) Two-sided limits. | | | | | Continuity on \mathbb{R} | (b) One-sided limits. | 4 | | | | | (c) Continuity. | 4 | | | | | (d) Uniform continuity | | | | | | (a) The derivative. | | | | | Differentiability on P | (b) Differentiability theorems. | 3 | | | | Differentiability on \mathbb{R} | (c) Mean-value theorem and Taylor's formula. | | | | | | (d) Local extrema and second derivative test. | | | | | | (a) Riemann integrals. | | | | | Integrability on \mathbb{R} | (b) Fundamental theorem of Calculus. | 3 | | | | | (c) Improper integrals. | | | | | Infinite series of | (a) Uniform convergence of series. | | | | | | (b) Power series. | 3 | | | | functions | (c) Analytic functions. | | | | ## 數學系課程核心教材內容 | 課程名稱:(中 | 文)高等微積分 | 開課單位 | 學士班 | | | |------------------------------|---------|------|-----|------|---------| | (英文) Advanced Calculus (II) | | | | 課程代碼 | 2102002 | | 學分數 | 4 | 必/選修 | 必修 | 開課年級 | _ | 教學目標:訓練學生之數學分析的能力 課程概述:討論函數的連續、可微及積分性質 先修科目或先備能力:高等微積分(一) 建議參考書目 Wade, An Introduction to Analysis. Kosmala, A Friendly Introduction to Analysis. ## 課程大綱 | 單元主題 | 內容綱要 | 上課週數 | |-------------------------------------|--|------| | Euclidean spaces \mathbb{R}^n | (a) Open sets and closed sets in Rⁿ. (b) Interior, closure and boundary. (c) Connected and disconnected sets. | 3 | | | (d) Compact sets. | | | Convergence in \mathbb{R}^n | (a) Limits of sequences.(b) Limits of functions.(c) Continuous functions. | 3 | | Differentiability on \mathbb{R}^n | (a) Partial derivatives. (b) Definition of differentiability. (c) Local extrema and second derivative test. (d) Mean-value theorem and Taylor's formula. (e) Inverse and implicit function theorems. | 4 | | Integration on \mathbb{R}^n | (a) Jordan regions.(b) Riemann integration on Jordan regions.(c) Iterated integrals.(d) Change of variables. | 3 | | Vector calculus | (a) Curves and surfaces.(b) Green's theorem.(c) Divergence theorem.(d) Stoke's theorem. | 3 |