數學系課程核心教材內容

課程名稱:(中	文)高等微積分	開課單位	學士班		
(英文) Advanced Calculus (I)				課程代碼	2102001
學分數	4	必/選修	必修	開課年級	-

教學目標:訓練學生之數學分析的能力

課程概述:討論函數的連續、可微及積分性質

先修科目或先備能力:微積分(一)(二)

建議參考書目

Wade, An Introduction to Analysis.

Kosmala, A Friendly Introduction to Analysis.

課程大綱

單元主題	內容綱要	上課週數		
	(a) Completeness axiom.			
	(b) Limits of sequences.	3		
Sequences in \mathbb{R}	(c) Limit theorems.			
	(d) Bolzano-Weierstrass Theorem.			
	(e) Cauchy sequences.			
	(a) Two-sided limits.			
Continuity on \mathbb{R}	(b) One-sided limits.	4		
	(c) Continuity.	4		
	(d) Uniform continuity			
	(a) The derivative.			
Differentiability on P	(b) Differentiability theorems.	3		
Differentiability on \mathbb{R}	(c) Mean-value theorem and Taylor's formula.			
	(d) Local extrema and second derivative test.			
	(a) Riemann integrals.			
Integrability on \mathbb{R}	(b) Fundamental theorem of Calculus.	3		
	(c) Improper integrals.			
Infinite series of	(a) Uniform convergence of series.			
	(b) Power series.	3		
functions	(c) Analytic functions.			

數學系課程核心教材內容

課程名稱:(中	文)高等微積分	開課單位	學士班		
(英文) Advanced Calculus (II)				課程代碼	2102002
學分數	4	必/選修	必修	開課年級	_

教學目標:訓練學生之數學分析的能力

課程概述:討論函數的連續、可微及積分性質

先修科目或先備能力:高等微積分(一)

建議參考書目

Wade, An Introduction to Analysis.

Kosmala, A Friendly Introduction to Analysis.

課程大綱

單元主題	內容綱要	上課週數
Euclidean spaces \mathbb{R}^n	 (a) Open sets and closed sets in Rⁿ. (b) Interior, closure and boundary. (c) Connected and disconnected sets. 	3
	(d) Compact sets.	
Convergence in \mathbb{R}^n	(a) Limits of sequences.(b) Limits of functions.(c) Continuous functions.	3
Differentiability on \mathbb{R}^n	 (a) Partial derivatives. (b) Definition of differentiability. (c) Local extrema and second derivative test. (d) Mean-value theorem and Taylor's formula. (e) Inverse and implicit function theorems. 	4
Integration on \mathbb{R}^n	(a) Jordan regions.(b) Riemann integration on Jordan regions.(c) Iterated integrals.(d) Change of variables.	3
Vector calculus	(a) Curves and surfaces.(b) Green's theorem.(c) Divergence theorem.(d) Stoke's theorem.	3