課程名稱:(中文) 偏微分方程導論 (英文) Introduction to Partial Differential Equations			開課單位	學士班		
			課程代碼	2104201		
學分數	3	必/選修	選	開課年級	巴	
教學目標: Some properties of important types of PDE.						
課程概述: We grab the basic idea and concepts. After that, we study the first order, second order						
linear equations.						
先修科目或先備能力:Calculus						
建議參考書目	An Introduction Partial Differen	n to PDE, by Yehu tial Equations, Ar	Ida Pinchover and	l Jacob Rubinsteii Walter Strass.	1	

數學系課程核心教材內容

課程大綱

單元主題	內容綱要	上課週數
Introduction	Classification, Differential equations as mathematical models, Simple examples	1~2 weeks
First-order equations	Quasilinear equations, The method of characteristics, Examples, The Lagrange method, Conservation laws and shock waves, The eikonal equation, General nonlinear equations	6~7 weeks
Second-order linear equations	Classification, Canonical form of hyperpolic (and parabolic, elliptic) forms	2-3 weeks
The one-dimensional wave equation	Canonical form and general solution, The Cauchy problem and dAlembert's formula, Domain of dependence and region of influence, The Cauchy problem for the nonhomogeneous wave equation	3-4 weeks
The method of separation of variables	eat equation, Elliptic equation, The energy method method and uniqueness	2-3 weeks
Sturm-Liouville problems	Sturm-Liouville problems, Sturm-Liouville eigenfunctions and eigenvalues, Nonhomogeneous boundary conditions	1-2 weeks