數學系課程核心教材內容

課程名稱:(中文) 微分方程數值方法				開課單位	學士班
(英文) Numerical Methods for Differential Equations				課程代碼	2103522
學分數	3	必/選修	選	開課年級	E

教學目標: Introduce numerical algorithms and basic error analysis for solving the ordinary differential equations together with theory of interpolation and approximation, numerical differentiation and integration.

課程概述: interpolation and approximation, numerical differentiation and integration, numerical methods for initial value problems

先修科目或先備能力:微積分、線性代數、微分方程、電腦程式能力

建議參考書目

Grasselli, *Numerical Mathematics*, Narosa Book Distributors Pvt Ltd, 2008 Burden and Faires, *Numerical Analysis*,8th ed., Thomson Brooks, 2005 Suli, *An Intro. to Numerical Analysis*, Cambridge University Press, 2006 Sauer, *Numerical Analysis*,2006 Atkinson and Kendall, *Elementary numerical analysis*.John Wiley, 2005

課程大綱

單元主題	內容綱要	上課週數
Programming review*	C/C++ for numerical computing	1-2*
Error and Computer Arithmetics*	floating-point numbers*, definitions and sources of errors, propagation of errors*	1-2*
Interpolation and Approximation	polynomial interpolation, error formula, spline interpolation, least-squares approximation*, Chebyshev polynomials*	3-4
Numerical Integration and Differentiation	Trapezoidal, Simpson and midpoint rules, error formulas, Gaussian quadratures, numerical differentiation, Richardson extrapolation*	3
Numerical Methods for ODEs	Solvability theory, Euler's method and convergence analysis, numerical stability, simple implicit methods, Taylor series method, Runge-Kutta methods*, multistep methods*, system of differential equations	4-6
Applications least-squares data fitting, finite difference method for two-point boundary value problems*		1-3

^{*:} optional topics